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Abstract. The possibility of the pion condensation phenomenon in cold and electrically neutral dense bary-
onic matter is investigated in β-equilibrium. For simplicity, the consideration is performed in the framework
of a Nambu–Jona-Lasinio model with two quark flavors at zero current quark mass and for rather small
values of the baryon chemical potential, where the diquark condensation might be ignored. Two sets of
model parameters are used. For the first, the pion condensed phase with finite baryon density is realized. In
this phase both electrons and the pion condensate take part in the neutralization of the quark electric charge.
For the second set of model parameters, the pion condensation is impossible if the neutrality condition is
imposed. The behavior of meson masses vs. quark chemical potential has been studied in electrically neutral
matter.

PACS. 14.40.-n; 11.30.Qc; 12.39.-x; 21.65.+f

1 Introduction

According to a well-known point of view [1–3], pionic de-
grees of freedom and, especially, the pion condensation
phenomenon might play a significant role in the descrip-
tion of different nuclear matter effects. At the present time
it is widely believed that the dense baryonic matter that
might exist inside compact star cores or observed in rel-
ativistic heavy ion collisions is no more than dense quark
matter, obeying an isospin asymmetry. The physics of such
a quark matter is adequately described in the framework of
QCD with nonzero isospin chemical potential µI. Recently,
it was shown that a nonzero pion condensate is generated
in QCD if µI is greater than the pion mass. This result was
obtained in the framework of an effective chiral Lagrangian
approach [4] as well as in QCD lattice calculations, per-
formed at zero or small values of the baryon chemical po-
tential µB [5]. However, these two approaches are not ap-
plicable for the description of an isotopically asymmetric
matter at moderate baryon density. To overcome the prob-
lem, it was proposed to study the QCD phase diagram on
the basis of Nambu–Jona-Lasinio (NJL)-type models [6, 7]
(see also the reviews [8, 9]), which contain quarks as mi-
croscopic degrees of freedom, in the presence of a baryon
chemical potential µB and an isospin µI one. In this way
the influence of µB, µI on both the chiral symmetry restora-
tion effect [10] and the formation of color superconduct-
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ing (CSC) dense baryonic matter [11] was considered, but
without taking into account the pion condensation phe-
nomenon.
Recently, the pionic condensation effect was investi-

gated in some NJL models at nonzero values of µB and
µI [12–14]. In particular, it was shown in [14] that quark
matter with finite isospin density might exist in two dif-
ferent phases. In the first the baryon density is zero and
quarks are gapped, whereas in the second the baryon dens-
ity is nonzero and quarks are gapless. Note that in [12–14]
the chemical potentials µB, µI are independent external
parameters, so the results might be relevant to the physics
of the heavy ion collision experiments only, and do not de-
scribe the real situation inside compact stars. The reason is
that matter in the bulk of a compact star should be elec-
trically neutral (at least, on average) as well as remain in
β-equilibrium, i.e. all β-processes that include quarks and
leptons should go with equal rates in both directions (as
a rule, in this case µI depends on µB).
In the present paper, we study in the framework of

an NJL model, in contrast to [12–14], the possibility of
the pion condensation phenomenon in electrically neutral
matter with finite baryonic density at zero temperature.
Moreover, matter in our consideration is required to be
in β-equilibrium. This means that, apart from quark and
meson degrees of freedom, it is necessary to take into ac-
count charged leptons (electrons only, for simplicity). Since
both the pion condensate and electrons have a nonzero
electric charge, it is clear that the positive charge of quark
matter might be compensated in our case in several ways,
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depending on the competition between electrons and the
pion condensate. We placed the charge neutrality condi-
tion only locally, i.e. we suppose that the ground state of
matter is a uniform phase with zero electric charge density.
One should also note that we do not take into consideration
the CSC effects (see e.g. [15–19]), so our results are valid
for not too large values of the baryon chemical potential,
say, for µB < 1200MeV

1.
The paper is organized as follows. In Sect. 2 the phase

structure of the NJL model with zero current quark mass
is investigated under the requirements of electrical neu-
trality and β-equilibrium for the two parameter sets: G=
5.01 GeV−2, Λ = 0.65GeV (set 1) and G = 6.82 GeV−2,
Λ= 0.6 GeV (set 2) (G is the model coupling constant, Λ is
the three-dimensional cutoff parameter, used in loop inte-
grations). It turns out that for the set 1 the neutral matter
with pion condensate is allowed to exist at some values of
µ ≡ µB/3, whereas for the set 2 it is forbidden. In Sect. 3
the mass behaviors of the scalar and pseudoscalar mesons
are considered vs. µ for the parameter set 1.

2 The model and its phase structure

Our investigations are based on the NJL model with two
quark flavors. The corresponding Lagrangian has the fol-
lowing form:

Lq = q̄γ
ν i∂νq+G

[
(q̄q)2+(q̄iγ5τq)2

]
, (1)

where τi (i = 1, 2, 3) are Pauli matrices and, for simpli-
city, current quark masses are taken as zero. Clearly, the
Lagrangian Lq is invariant under transformations of the
color SUc(3) and baryon UB(1) groups as well as under
the parity transformation P. In addition, this Lagrangian
is symmetric with respect to the chiral SU(2)L×SU(2)R
group (chiral transformations act on the flavor indices of
quark fields only). In particular, it is invariant under the
isotopic SU(2)I group as well. Moreover, since Q = I3+
B/2 (in the flavor space I3 = τ3/2 is the generator of the
third isospin component, Q= diag(2/3,−1/3) is the gen-
erator of the electric charge, and B = diag(1/3, 1/3) is the
baryon charge generator), the electric charge is conserved
too in the NJL model (1).
Due to the β-equilibrium requirement, we must in-

corporate electrons in our consideration. So, the full La-
grangian of the system looks like

L̄= Lq+ ēγ
ν i∂νe , (2)

where e is the electron spinor field. (We suppose that elec-
trons are free massless particles, for simplicity.) Clearly,
the Lagrangian (2) is well suited for the description of dif-
ferent processes in the vacuum. To study the properties of

1 The properties of the electrically neutral and β-equilibrated
CSC matter at finite baryon density were investigated in the
framework of an NJL model in [16], but without taking into
account the pion condensation.

matter with nonzero baryon as well as electric charges, we
need to modify (2) as follows:

L= L̄+µBNB+µQNQ , (3)

where NB, NQ are baryon- and electric-charge density op-
erators, correspondingly, and µB, µQ are their chemical
potentials2. Evidently,

NB = q̄Bγ
0q , NQ = q̄Qγ

0q− ēγ0e . (4)

The µQ term in (3) spoils the vacuum chiral SU(2)L×
SU(2)R symmetry of the system. So, at µQ �= 0 the La-
grangian L is invariant only under the reduced UI3L(1)×
UI3R(1) chiral symmetry group, i.e. the isotopic SU(2)I
symmetry between u and d quarks is absent in the medium.
In this case the pion condensation phenomenon might
occur. It means, without loss of generality, that the
ground-state expectation value of the form 〈q̄iγ5τ1q〉 is
nonzero, whereas 〈q̄iγ5τ2,3q〉= 0 (clearly, parity is broken
in the ground state of matter with nonzero pion conden-
sate). Another characteristic of the ground state of dense
matter is the chiral condensate, i.e. the quantity 〈q̄q〉.
When it is nonzero, the chiral symmetry is spontaneously
broken down. In the present paper, in order to establish the
phase structure of the neutral matter within the framework
of the model (3), we restrict ourselves to the consideration
of these two condensates only.
The competition between these two condensates is gov-

erned by the thermodynamic potential (TDP), which in
the mean field approximation has the following form (it can
be obtained with ease, using e.g. the technique of [19]):

Ω(M,∆) =−
µ4Q

12π2
+
M2+∆2

4G
−3
∑
a

∫
d3p

(2π)3
|Ea| ,

(5)

where the first term on the right-hand side is the TDP of
free massless electrons. The summation in (5) runs over all
quasiparticles (a= u, d, ū, d̄), where

Eu =E
−
∆− µ̄ , Eū =E

+
∆+ µ̄ ,

Ed =E
+
∆− µ̄ , Ed̄ =E

−
∆+ µ̄ , (6)

andE±∆ =
√
(E±)2+∆2,E± =E±µQ/2,E =

√
p2+M2,

µ̄ = µB/3+µQ/6. The factor 3 in front of the summa-
tion symbol in (5) indicates the three-fold degeneracy of
each quasiparticle in color. Moreover, in order to avoid
usual ultraviolet divergences, the integration region in (5)
is restricted by a cutoff Λ, i.e. |p| < Λ. First of all, let
us fix the model parameters as follows: G = 5.01GeV−2,
Λ= 0.65GeV (set 1) (later, another parameter set will be
discussed). The gap coordinates (M0,∆0) of the global

2 The Lagrangian (3) can be identically transformed in
the following way: L = L̄+(µB/3+µQ/6)q̄γ

0q+µQq̄I3γ
0q−

µQēγ
0e, where I3 is presented after (1). It is clear from this

relation that µQ is just the isospin chemical potential µI.
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minimum point of the function Ω(M,∆) are connected
with condensates in the following way:

M0 =−2G〈q̄q〉 , ∆0 =−2Gi〈q̄γ
5τ1q〉 . (7)

So, if ∆0 is nonzero in the global minimum point (GMP),
then the pion condensation phase is realized. Note that the
quark gap M0 is just the dynamical (constituent) quark
mass. From (5) it is possible to obtain the gap equations

0 =
∂Ω(M,∆)

∂M

≡
M

2G
−6M

∫
d3p

(2π)3E

{
θ(E+∆− µ̄)E

+

E+∆

+
θ(E−∆− µ̄)E

−

E−∆

}
,

0 =
∂Ω(M,∆)

∂∆

≡
∆

2G
−6∆

∫
d3p

(2π)3

{
θ(E+∆− µ̄)

E+∆
+
θ(E−∆− µ̄)

E−∆

}
.

(8)

As was noted in the Introduction, we are going to im-
pose the neutrality constraint locally, i.e. we search for the
ground state of the system, in which the electric charge
density nQ ≡−∂Ω/∂µQ turns into zero. In other words, we
study the GMP of the function Ω(M,∆) under the con-
straint

0 = nQ ≡
µ3Q

3π2
+

∫
d3p

(2π)3

×

{
θ(µ̄−E+∆)+ θ(µ̄−E

−
∆)

+3θ(E+∆− µ̄)
E+

E+∆
−3θ(E−∆− µ̄)

E−

E−∆

}
.

(9)

It is easily seen from the gap equations (8) that at µQ �= 0
the global minimum point of the TDP (5) might take only
one of the following three forms in the (M,∆)-space: (i)
(0, 0), (ii) (M0, 0), and (iii) (0,∆0). (In the ground state,
corresponding to the GMP of the form (i), both the chiral
and pion condensates are zero. The solution of the type (ii)
corresponds to the matter phase in which only the chiral
condensate is generated. Finally, in the GMP of the form
(iii) the chiral condensate is zero, but the pion condensate
is nonzero3.) If the neutrality requirement (9) is not taken
into account, then the quantitiesM0 and ∆0 are functions

3 If µQ = 0, then the TDP (5) depends effectively on the sin-

gle variable ρ ≡
√
M2+∆2. So, at sufficiently small values of

µB the global minimum of the function Ω(M,∆) is achieved at
all points of some circle in the (M,∆)-space. Formally, in this
case there is a freedom for selecting the GMP. However, since
at zero isospin chemical potential, i.e. at µQ = 0, parity is a con-
served quantity in the strongly interacting physics, we suppose

Fig. 1. The behavior of the electric chemical potential µQ vs.
quark chemical potential µ= µB/3 in the electrically neutral
matter for set 1 of NJL model parameters. Here µ1c ≈ 301MeV,
µ2c ≈ 323.5 MeV

of the chemical potentials µQ and µB, which are indepen-
dent quantities. In this case the model is relevant for the
description of matter with nonzero electric charge density.
However, since we are going to study the electrically (lo-

cally) neutral matter, it is necessary to perform the joint
consideration of the neutrality constraint (9) and the gap
equations (8). In this case both the gaps, i.e. the GMP co-
ordinates, and the electric chemical potential µQ are func-
tions of the baryon chemical potential µB only (below, the
analysis is performed in terms of the quark chemical poten-
tial µ ≡ µB/3). Numerical investigations of the equations
(8) and (9) show the following results on the phase struc-
ture of the electrically neutral matter for the parameter
set 1.
At sufficiently small quark chemical potential µ<µ1c ≈

301MeV the quantity µQ is equal to zero (see Fig. 1). In
this case the ground state of the system corresponds to
a chirally noninvariant phase. In terms of TDP it means
that at µ < µ1c the GMP has the form (ii) with M0 ≈
301MeV. In this phase both the baryon and the isospin
densities are zero, so there is no need to neutralize the
quark electric charge. Hence, it is not surprising why µQ =
0 at rather small values of µ.
At µ1c < µ < µ2c ≈ 323.5MeV the GMP has the form

(iii), i.e. in this case the pion condensed phase is real-
ized. The pion condensate ∆0 vs. µ is depicted in Fig. 2.
For this phase of neutral matter µQ is a nonzero negative
quantity (see Fig. 1). Nevertheless, the numerical study
shows that µQ is a sufficiently small quantity, so the rela-
tion ∆0 < µ̄ is fulfilled. As a result, one can see that both
u- and d-quasiparticles are gapless in this phase, i.e. the

that in this case the pion condensate is zero, but the chiral one
is nonzero (at rather small values of µB), i.e. the global mini-
mum is placed by hand in the point of the form (ii), and the
chirally noninvariant phase is realized (the details of the phase
structure investigation of the NJL model (3) with zero current
quark mass and at µQ = 0 are presented e.g. in [20]).
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Fig. 2. The pion condensate ∆0 vs. µ= µB/3 in the electrically
neutral matter for the parameter set 1. Here µ1c ≈ 301MeV,
µ2c ≈ 323.5 MeV

quantities Eu and Ed from (6) with ∆=∆0 andM = 0 be-
come zero at some energy values, so there is no energy cost
for creating these quasiparticles. This fact means that at
µ1c < µ < µ2c we have the gapless pion condensed phase
(GPC), which has a nonzero baryon charge (see also [14]).
In the GPC phase the electric charge of quarks is neutral-
ized both by the electric charge of the electron gas and the
charge of the pion condensate.
Finally, at larger values of the quark chemical poten-

tial, i.e. at µ2c < µ, the normal dense baryonic phase is
arranged, in which both condensates are zero. Hence, in
this phase only the electron gas takes part in the neutral-
ization of the quark electric charge. Therefore, the absolute
values of µQ at µ2c < µ are greater than in the GPC phase
(see Fig. 1).
Now, let us consider the phase structure of the electri-

cally neutral matter for another set of model parameters
(set 2): G = 6.82GeV−2, Λ= 0.6GeV (in this case the dy-
namical quark mass is approximately 400MeV in the vac-
uum, i.e. at µQ, µB = 0). Numerical analysis shows that
for set 2 the phase structure of the model (3) differs qual-
itatively from the set 1 case. Indeed, here at the point
µc ≈ 386.2MeV we have at once the phase transition from
the chirally noninvariant phase, which is at µ < µc, to the
normal dense baryonic phase, at µc < µ, with zero pion –
as well as chiral condensates. It turns out that under the
neutrality constraint the pion condensation is prohibited in
the NJLmodel with set 2 parameters at zero temperature4.
In contrast, without this constraint the pion condensation
is allowed to exist in the set 2 NJL model (see [12, 14]).

4 This is an important point. Indeed, it was shown in [16, 17]
that in electrically neutral matter with rather large baryon
density the temperature induces a diquark condensation for
some range of model parameters, thus tending to the color
superconductivity. In a similar way, we suppose that at low
baryon density the pion condensation can appear in the neutral
matter at some temperature interval. However, it is a subject of
special consideration.

3 Meson masses in electrically neutral matter

In the present section the masses of mesons are investi-
gated in the electrically neutral matter. We will follow the
method used in [21] for studying the particle masses in the
color superconducting quark matter. To begin with, let us
introduce auxiliary bosonic fields

σ(x) =−2G(q̄q) , πa(x) =−2G(q̄iγ
5τaq) , (10)

where a= 1, 2, 3. In the following we will ignore the influ-
ence of electrons on the in-mediummeson masses. In terms
of σ(x) and πa(x) the Lagrangian (3) (with omitted elec-
tron part) can be reduced to the form

L= q̄

[
γν i∂ν + µ̄γ

0+
µQ

2
τ3γ

0−σ− iγ5πaτa

]

× q−
1

4G

[
σσ+πaπa

]
(11)

(the quantity µ̄ is defined after (6)). Starting from (11), it
is possible to integrate out the quark fields and obtain the
effective action of the system in the one-quark loop approx-
imation:

Seff(σ, πa) =−

∫
d4x

[
σ2+π2a
4G

]
− iTrsfcx lnD , (12)

where

D = γν i∂ν + µ̄γ
0+
µQ

2
τ3γ

0−σ− iγ5πaτa . (13)

The Tr operation in (12) stands for calculating the trace in
spinor (s), flavor (f), color (c) as well as four-dimensional
coordinate (x) spaces, correspondingly.
It is clear from (7) and (10) that the coordinates

(M0,∆0) of the global minimum point of the TDP are just
the ground-state expectation values of the σ and π1 fields,
i.e.M0 ≡ 〈σ(x)〉, ∆0 ≡ 〈π1(x)〉.
Let us make the following field shifts in (12): σ(x)→

M0+σ(x), π1(x)→∆0+π1(x), and thereafter expand the
effective action up to second order in the meson fields.
Differentiating twice the obtained expression with respect
to meson fields, it is then possible to obtain the one-
particle irreducible (1PI) Green’s functions ΓXY of the
mesons (X,Y = σ, π1, π2, π3). (In the present paper we
omit these cumbersome calculations, referring to the simi-
lar meson mass calculations in [21].) The results are the
following.
First, let us consider the masses of the σ- as well

as π3-mesons. (Note that π0 ≡ π3.) It turns out that
both σ- and π0-mesons are not mixed with other par-
ticles. Moreover, in the momentum space representation
and at zero three-momentum, p = 0, we have in the
neutral gapless pion condensed phase of matter (µ1c <
µ< µ2c):

Γσσ(p0) = Γπ0π0(p0)
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Fig. 3. Scalar and pseudoscalar meson masses vs. µ= µB/3 in
the electrically neutral matter for the parameter set 1. Here
µ1c ≈ 301 MeV, µ2c ≈ 323.5 MeV

=
1

2G
+6

∫
d3q

(2π)3

×

{
θ(ε+∆− µ̄)

ε+∆

[
ε+∆p0−µQε

+

(ε+∆−p0)
2− (ε−∆)

2

−
ε+∆p0+µQε

+

(ε+∆+p0)
2− (ε−∆)

2

]

+
θ(ε−∆− µ̄)

ε−∆

[
ε−∆p0+µQε

−

(ε−∆−p0)
2− (ε+∆)

2

+
µQε

−− ε−∆p0
(ε−∆+p0)

2− (ε+∆)
2

]}
,

(14)

where ε±∆ =
√
(ε±)2+∆20, ε

± = |q| ±µQ/2. Recall that
µ̄= µ+µQ/6. Eliminating in (14) the coupling constantG
with the help of the ∆0-gap equations (8), we obtain in the
GPC phase

Γσσ(p0) = Γπ0π0(p0)∼ p
2
0−µ

2
Q . (15)

Since the zero of a 1PI function in the p20-plane defines the
mass squared of a particle, it is evident from (15) that in
the GPC phaseMπ0 =Mσ = |µQ| (see Fig. 3, whereMσ, π0
are depicted, or Fig. 1 for µQ).
The expressions for the 1PI functions of the σ- and π0-

mesons in the normal dense quark matter, i.e. at µ2c < µ,
follow from (14) at ∆0 = 0. The zeros of the Green’s func-
tions Γσσ(p0) and Γπ0π0(p0) in the p

2
0-plane were studied

numerically in this phase as well. The corresponding mass
behaviors vs. µ are depicted in Fig. 3 at µ2c < µ.
In contrast to the σ, π0-sector, in the sector of π1 and π2

fields the 1PI Green’s functions (at p= 0) form a nontrivial
matrix ΓGPC(p0) in the GPC phase, i.e. there is a mixing

between π1 and π2
5. Its matrix elements are

ΓGPCπ1π1
(p0) = 6(p

2
0−4∆

2
0)A(p

2
0) ,

ΓGPCπ2π2
(p0) = 6p

2
0A(p

2
0) ,

ΓGPCπ2π1
(p0) = Γ

GPC
π1π2
(−p0) = 12ip0B(p

2
0) ,

(16)

where ∆0 is presented in Fig. 2 and

A(p20) =

∫
d3q

(2π)3

{
θ(ε+∆− µ̄)

ε+∆[p
2
0−4(ε

+
∆)
2]
+

θ(ε−∆− µ̄)

ε−∆[p
2
0−4(ε

−
∆)
2]

}
,

B(p20) =

∫
d3q

(2π)3

{
ε+θ(ε+∆− µ̄)

ε+∆[p
2
0−4(ε

+
∆)
2]
−
ε−θ(ε−∆− µ̄)

ε−∆[p
2
0−4(ε

−
∆)
2]

}

(17)

(see also the notation after (14)). Note that in the GPC
phase ∆0 < µ̄ and, in addition, µQ < 0. Therefore, the min-
imal value of the quantity ε+∆ in the integrands of (17) is
µ̄. As a result, we see that A(p20) and B(p

2
0) are analytical

functions in the whole p20-plane, except for the cut which
is at p20 > 4µ̄

2. Since there is a mixing between π1 and π2
fields, the masses of meson modes in this sector are defined
by the zeros of det(ΓGPC(p0)) in the p

2
0-plane, i.e. by the

equation

det(ΓGPC(p0)) = 36p
2
0

{
(p20−4∆

2
0)A

2(p20)−4B
2(p20)

}
= 0 .
(18)

The evident solution of this equation is p20 = 0. It cor-
responds to a massless meson mode, specified by πL (see
Fig. 3), that is actually the Nambu–Goldstone boson. (The
appearance of such a mode in the GPC phase is justified by
the spontaneous breaking of the initial UI3L(1)×UI3R(1)
chiral symmetry down to the Abelian subgroup.) The non-
trivial solution of (18) is the zero of the expression in the
braces. It corresponds to a massive meson mode, denoted
by πH (see Fig. 3). (Clearly, its mass, MπH , lies in the in-
terval 2∆0 <MπH < 2µ̄.)
In the dense normal quark matter (NQM) phase, i.e. at

µ2c < µ, it is convenient to use the charged fields π±(x) =
(π1(x)± iπ2(x))/

√
2. Then, in the NQM phase the matrix

ΓNQM(p0) of 1PI Green’s functions of the π±-mesons looks
like

ΓNQMπ+π−
(p0) = Γ

NQM
π−π+

(−p0)

=
1

2G
−
3

π2

{
Λ2−

3µ2Q
4
−
p0µQ

2
−
(
µ+
µQ

6

)2

+
(µQ+p0)

2

4
ln

[
4Λ2− (µQ+p0)2

(2µ+µQ/3)2−p20

]}
,

ΓNQMπ+π+
(p0) = Γ

NQM
π−π−

(p0) = 0 . (19)

The numerical investigation of the zeros of the quantity
det(ΓGPC(p0)) shows the presence of two pionic massive

5 Note that at nonzero current quark mass there is actually
a mixing between σ-, π1-, and π2 fields in the pion condensed
phase.
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modes, which might be identified in the NQM phase with
π±-mesons (see Fig. 3). Evidently, in this phase the mass
splitting between π±-mesons is due to the isospin asymme-
try that is generated by nonzero µQ.
Finally, in Fig. 3 the masses of mesons in the chirally

noninvariant phase, i.e. at µ < µ1c, are presented as well.
In this phase µQ ≡ 0, and only the chiral gapM0 �= 0. It is
well known that in this caseMσ = 2M0 ≈ 602MeV, and the
three π-mesons are massless Nambu–Goldstone bosons.

4 Summary

In the present paper we have studied the properties of elec-
trically neutral and β-equilibrated cold matter with finite
baryonic density. The problem is inspired by the physics of
compact stars. For simplicity, the consideration was done
in the framework of a NJL model with zero current quark
mass.We have found that for the set 1 of model parameters
(see the end of the Introduction) there are three different
phases, including the one with a pion condensate, of neu-
tral matter. In contrast, for the parameter set 2 the pion
condensation in the neutral matter is forbidden. More-
over, we have studied the behavior of meson masses vs.
quark chemical potential in the case of the parameter set
1 (see Fig. 3). Since the electric neutrality of the system
is realized together with an isospin asymmetry between
quarks, it turns out that the masses of π-mesons are split
at nonzero baryon density.
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